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ABSTRACT
The equations governing the flow of viscoelastic liquids are classified

according to the symbol of their differential operators. Propagation of
singularities is discussed and conditions for a change of type are
investigated. The vorticity equation for steady flow can change type when a
critical condition involving speed and stresses is satisfied. This leads to a
partitioning of the field of flow into subcritical and supercritical regions,

as in the problem of transonic flow.
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SIGNIFICANCE AND EXPLANATION

Viscoelastic liquids exhibit a number of strange and unexpected phenomena ?;f

when the influence of elasticity (the "Weissenberg number”) is high. —;J
Numerical simulations of high Weissenberg number flows have encountered é::;
R

considerable difficulties. iig
This paper advances the idea that some properties of flow as well as some 22%
problems of numerical integration may be associated with a change of type in -;:i
LS

the governing equations. Many models of viscoelastic fluids predict such a Eiz
change of type for steady flow, similar to a sonic transition in gas }}x

dynamics. We investigate the conditions for such a transition and discuss

various applications.
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<3 HYPERBOLICITY AND CHANGE OF TYPE IN THE FLOW OF VISCOELASTIC FLUIDS

Daniel D. Joseph‘, Michael Ranardyz and Jean-Claude Saut3

4 1. Introduction

0 The equations of steady gas dynamics change type when the speed of the fluid at some

D

point exceeds the speed of sound. If this happens, then discontinuities can appear in the

\?\. supersonic region. We are interested in the possibility that many strange effects in the

AN 4
n‘\} flow of viscoelastic liquids, as well as difficulties in numerical simulation, are also

ag-

':%;‘:. associated with the appear:nce of real characteristics and a change of type, analogous to

the sonic transition.

Rf: For a physical interpretation, it is necessary to identify the variables which may
,ti\ propagate and become discontinuous. In gas dynamics, there are compression waves and shock
;:;: waves of compression. In the present paper, we deal with incompressible materials, so
:ff~ compression is impossible. Instead, we can exhibit cases where singular shear surfaces
::E:ﬁ ’ propagate along characteristics (Chapters 6,7). 1In steady flow, the vorticity is the

:5;3 variable which is affected by a change of type and may become discontinuous (Chapters 8-
OO 11). The implications of hyperbolicity and change of type for the interpretation of
\th? experiments are not yet well understood.
';~*: The organization of our paper is shown in the Table of Contents. In §2, we motivate

)

‘-}{ our study by suggesting that one of the main unsolved practical problems of computation of
R o

viscoelastic flow may be partly due to the problem of change of type. We suggest that the
solution of this problem is to be found in recently developed switching algorithms of the
j‘ type used in transonic flow. In §3 we define some basic concepts needed in our study,
including elliptic, hyperbolic, characteristic, symbol of an operator and Hadamard

instability. We also give some applications of these concepts which arise in modeling

1D0plrtnant of Aerospace Engineering and Mechanics, University of Minnesota,
110 Union Street, S.E., Minneapolis, MN 55455

Department of Mathematics and Mathematica Research Center,

University of Wisconsin-Madison, Madison, WI 53705

Department of Mathematics, Universite de Paris-Sud, F-91405, Orsay, France

gponlotod by:

The United States Army under Contract No. DAAG29-82-X0051 and by the Fluid@ Mechanics
Branch of the National Science Foundation.

2rhe United States Army under Contract No. DAAG29-80-C-0041. This material is based upon
work supported by the National Science Poundation under Grant Nos. MC§~7927062, Mod. 2,
MC8~-8210950 and MCS-8215064.
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phase changes and may be relevant in analyzing some instabilities in the extrusion of
polymers from capillary tubes. Chapter 4 discusses characteristics and classification of
type for first order quasilinear systems.

In Chapter 5, we look at constitutive equations for viscoelastic fluids from the point
of view of classification of type. For this, we have to maintain a distinction between
fluids with and without Newtonian viscosity. In Oldroyd models, the term with Newtonian
viscosity is the one associated with a retardation time. The addition of even small
amounts of Newtonian viscosity can smooth discontinuities, replacing sharp fronts by thin

layers and thus masking the underlying dynamics. To highlight the effect of hyperbolicity,
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we confine our attention to models without Newtonian viscosity. In particular, we focus on
a three-parameter family of nonlinear Oldroyd models containing the upper and lower
convected and corotational Maxwell models. The occurrence of Hadamard type instabilities
for these models is discussed. Thesze models also form the basis for the discussion of
steady flows in Chapters 9-11. We also discuss more general models of integral type. It
is shown that the principal part of the linearization at any given motion has the form of a
rate equation not involving integrals, provided that the integral kernels have sufficient
smoothness. Thus the discussion of change of type does not necessarily require a special
constitutive model.

Chapter 6 discusses the linear system of equations for motion perturbing rest. The
wave gpeed along characteristics is given by /67677;, where G(0) is the instantaneous
value of the relaxation modulus G(s) and p is the density. We review recent results on
the propagation of slip surfaces for velocity and displacement, which show in particular
the crucial dependence on the nature of the kernel G(s). In particular, consideration is
given to the possibility that G(0) or G'(0) may be infinite. In Chapter 7, we discuss
the formation and propagation of slip surfaces in nonlinear shearing problems treated by
Coleman and Gurtin [6]}, (7] and Slemrod (43), [44]). We discuss the application of their
results to melt fracture.

In Chapter 8 we take up the analysis of change of type in steady problems. This is a

natural question from a mathematical point of view, but the first studies of it in the
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theory of viscoelastic fluids seem to he in the work of Rutkevich [40, p. 44-45], who
analyzed the two dimensional equations for an upper convected Maxwell model. Ultman and
Nenn [49) and Luskin [27] classified the linearized equations perturbing uniform flow with
velocity U of an upper convected Maxwell fluid. Our analysis in Chapter 8 generalizes
the results of Ultmay and Denn and Luskin to a wider class of constitutive laws. There is
a change of type leading to real characteristics when the viscoelastic Mach number

M=U/, c=7G0)/p
exceeds one. The vorticity is identified as the variable which can become discontinuous
along these characteristics. We shall, somewhat loosely, say that "the vorticity changes
type". In Chapter 9, we give a complete classification of the quasilinear system
describing the upper convected Maxwell model in arbitrary steady two-dimensional motions.
The streamlines are double characteristics. The vorticity changes its type when the speeds
are great enough. In the supercritical (hyperbolic) case, there are two families of real
characteristics for the vorticity, but the formula for the characteristics depends on the
solution. There are also complex roots to the characteristic equation associated with the
elliptic equation giving the vorticity as the Laplacian of the stream function. In Chapter
10, we discuss a number of specific flows for an upper convected Maxwell fluid. These
flows include plane parallel shear flow, steady extensional flow, sink flow in tha plane
and shear flow outside a rotating cylinder. We discuss characteristics for motions
perturbing those flows and characterize the regions of flow where the vorticity equation is
hyperbolic. In Chapter 11, we extend our results to a three parameter family of Oldroyd
models which contains the upper and lower convected and corotational Maxwell models as
special cases. The vorticity is again identified as the variable which changes its type.
We compute the characteristic directions for the nonlinear problem without approximation.
We exhibit special cases which show that the partitioning of the flow into sub- and
supercritical regions is model sensitive. It is therefore desirable to develop this type
of theory on a high level of generality, suppressing models. We take some steps in that

direction in Chapter 12, where we study fading memory fluids of Coleman-Noll type.
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2. THE HIGH WEISSENRERG MNUMBER PROBLEM

The Weissenberg number is a number which is large when the elasticity of the fluid is

important.

proportional to a relaxation time for the fluid, or it may be viewed as the ratio of the
first normal stress to the shear stress.

viscoelastic Mach number, which is the ratio of a typical speed to a wave speed, defined

It is defined differently by different authors.

Many authors have it

differently for each problem, and is large when the relaxation time is large.

The high Weissenberg number problem is that the numerical integration of equations for

The parameter of interest in this study is a

viscoelastic fluids cannot be done when the Weissenberg number is high, or even moderate.

This problem is not solved by changing the model or by different methods of numerical

integration.

It is probable that some numerical problems at high Weissenberg number are actually

Maybe there is an underlying mathematical problem.

associated with a change of type, like the transition from subsonic flow to supersonic

flow, and that the solution of the problem is to be sought in various hyperbolic

algorithms, especially those recently introduced for transonic flow.

To compute subsonic flow you use some central differences.
you use the method of characteristics.

by central differencing of the type used for laplaces equation.

In the flow over a bump, say an airfoil with the free stream ever so slightly less

than M = 1,

we get a supersonic bubble with unknown boundaries (see Fig. 1).

.75 <M < 1

Fig. 1

-4~
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To compute supersonic flow

It would be a disaster to try to do supersonic flow

s




To solve this problem you have to find the sonic line, the position and strength of the
shock wave. This is a very hard free boundary problem. It wasn't solved until 1971 when
Murman and Cole [32] realized that upwind differencing was necessary in the supersonic part
of the flow. In central differencing the nodal point is at the center. In upwind

differencing, the information at a nodal point is determined only by the flow upstream (see

Fig. 2).
o °
[+] [ ] <] [ 0 ®
o o
central differencing upwind differencing
Fig. 2.

Murman and Cole studied the small disturbance equations. They derived a switching scheme
of numerical analysis which tells the computer to use central differencing if the flow is
subsonic and upwind differencing if the flow is supersonic. Their upwind differencing
equation can be interpreted as approximating a differential equation with an artificial
viscosity proportional to the mesh size [31].

Murman and Coles' method was the first success. But this method is too simple for the
full nonlinear potential.» This more complicated problem was successfully attacked by the
artificial viscosity method of Jameson [(19], [20), whose work makes transonic computation
possible in a practical sense.

People doing flow computations for viscoelastic fluids are also able to go to higher
Weissenberg numbers when they have constitutive equations with more Newtonian viscosity.

This procedure masks the problem of dealing with change of type instead of solving it.

-5-
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3. CONCEPTS AND SOME APPLICATIONS OF CHANGE OF TYPE

This paper deals with equations which undergo a change of type. To make our notions
precise we shall need some classical definitions related to the type of a partial
differential equation.

Consider the linear differential operator
(3.1) (xt, 3o, 5%:,...,3%-) ,
where

8= (Xq,%X3,.00,%x,) and t

are space and time coordinates. We define the

(3.2) Symbol of P = P(x,t,if,,48,,...,18 ) ,
where { = /:T. To form the symbol we replace the arguments %:, 5%—,...,5%— of P
1 n

with the Fourier variables 150,151,...,1En. In this way we obtain a polynomial in the

n
- 2
real variables £. The symbol of the lLaplace operator =-A is 2 Ei; the symbol of the
2 n i=1
3 2 . 2 ]
wave operator — - A is ‘50 + 2 517 the symbol of the heat operator 3= = A s
it i=1

n
- 2
150 + ) 51. The symbol for a system of equations is defined in a similar fashion and is
i=1
a matrix with polynomial entries.
Characteristic curves are lines along which discontinuous data may propagate. In

dimensions higher than two we may speak of characteristic surfaces. Let m be the highest

order of the derivatives in P. Then

P = X aa(g,t)aa + X aa(g,t)aa ,
ja|=m la]<m

where a = (00,01,...,Gn) is a multi-index, |a| = Z a, and

3% - Blal
a a a
3t Y3, ' ... oax ”
1 n

The equation

(3.3) ) aa(g,t)ca =0, 0 =1(05,e00s0 ),
|a}=m
a a
* =00 .. 0"
0 n

| P

loie Dol aTaaa'a o &
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is called the characteristic equation for P. Only the principal part of P, the terms of
highest order, appears in (3.3).

A surface S in (x,t) space is characteristic for P at a point s € S if the
normal vector to S at s satisfies the characteristic equation. If o = (00,...,on) is

a unit normal vector at s, S is characteristic for P {f and only if

n
{3.4) ) 02 = 1 and Y a (x)0% = 0.
k a
0 la|=m
o2 .2 ¢o2
The characteristic equation for laplaces equation l 3 u/axk =0 is l ok =
k=1 k=1

There are no real characteristics because (3.4)4 is not satisfied. More generally, !
operators P for which, at every point (j,t) the equation (3.4), has no nontrivial ce
zeroces are called elliptic. For systems, ellipticity means that the only real zeroes of
the determinant of the matrix symbol A(g,E1,...,En) are (E,,Ez,...,in) = (0,0,...,0).
Elliptic problems have existence, uniqueness and continuous dependence on data (are
well posed) as boundary value problems [1], [26].
The initial value problem, the Cauchy problem, is not well posed for elliptic
equations. For example, a Cauchy problem for laplaces equation in the domain
D= {x,y1 x>0, =»<Cy<e=} is
du=>0 4in D,
(3.5) u(0,y) =0,
%ﬁ (0,y) = uly) ,
where
U(y) = 1; sin ny, p> 0.

n
The solution of (3.5) is

u{x,y) = sin ny sinh nx .

n1+P

3
The mapping (u, sf)lx_o —>u for x > 0 is not continuous since U(y) is small when

n is large and u(x,y) is very big. Small data at x = 0 lead to larger and larger

-7-
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oscillations for x > 0. This lack of continuous dependence is called Hadamard
instability. It can be shown that (3.5) has no solution if U(¢) is not analytic.
The initial value problem, or mixed initial-boundary value problems are well-posed for

hyperbolic equations like the wave equation. For example, the characteristic equation

(3.4),
n
2 2 ¢ 2
99 = © 2 9 = 0
1
for the n-dimensional wave equation
2
3u, czAu
a2

satisfies the characteristic equation (3.4)1 when a9, = tc/ c2 + 1. Therefore a surface
is characteristic for the wave equation if and only if its normal makes an angle

2 + 1, with the t axis. Por the one-dimensional wave equation

B, cos B = ¢/Y ¢
A= 32/3x2, this implies that the family of lines xtct = const are characteristic.

The operator P of (3.1) is called strictly hyperbolic if all the roots Eo of the
principal part of its symbol (3.2) are real and distinct for all (51,.-.,€n) e R'\0. The
Cauchy problem is well posed and the boundary value problem is ill posed for hyperbolic
equations. The backward Cauchy problem where t is replaced with =t is also well-posed
for hyperbolic equations.

The Cauchy problem is well posed for parabolic problems but the backward Cauchy

problem is ill posed. The classic example of a parabolic equation is the heat equation,

3u/dt = Au. The characteristic equation (3.4), is

2

Hence, from (3.4)1, ag = 1 and the characteristic surfaces are the hyperplanes

t = const. The Cauchy problem is not well posed for the backward heat equation %% = -Au.

Operators of the form 3u + Lu, where L, 1like -5, is a positive definite elliptic

at
operator, are parabolic., These operators are strongly dissipative and lead to diffusion

-g-
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rather than to propagation. Unlike hyperbolic operators, parabolic operators will smooth
initially discontinuous Cauchy data.

Two homogeneous scalar operators are said to be of the same type, if up to a
transformation of the independent variables, their symbols have the same asymptotic
behavior at infinity. If the asymptotic behavior of the symbol changes, then we say that

the equation changes type. For example, the Tricomi equation

2 2
v 3 : + 9 : -0
ax dy

is hyperbolic when y < 0 and elliptic when y > 0. Another example is the quasilinear

system
3u _ 3o(v)
3t ax 2
(3.6) (or -a—;-g—x (o' (v —g%)
v - Ju at
3t Ix’

which is hyperbolic for o'(v) > 0 and elliptic for o'(v) < 0. These problems all
involve a change in the sign of the symbol and Hadamard instabilities. If we start with
initial data in the hyperbolic region, and if the solution of the Cauchy problem enters the
elliptic region, one has Hadamard instability and a loss of evolutionarity.

Problems of the form (3.6) suggest models for theories of phase changes in solids and
fluids. The van der Waals gas is a well-known classical example. In solid mechanics,
ideas of this type were introduced by J. Ericksen [12] in his study of elastic bars. We

may suppose that the graph of o(v) is as shown in Fig. 3.

]
T
Hysteresis loop

_\_\_ R NG

N :
\Ellxptic

Hyperbolic ~
e —— . -

Fig. 3. The system (3.6) is hyperbolic when o'(v) > 0.
The elliptic branch is unstable in the sense of Hadamard.
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The solid lines, where od'(v) > 0, lead to a hyperbolic equation and the dashed line leads
to an elliptic equation. The elliptic portion is .e)ected because it will exhibit Hadamard
instabilities; and actual solutions are required to operate only on the hyperbolic parts of
the curve. . This leads to spatially segregated solutions, separated by lines of
discontinuity, each part operating on a different hyperbolic branch of the curve. There is
hysteresis and abrupt transitions in the response of such models. These features are all
present in the recent study of Hunter and Slemrod [17], which attempts to explain some
obgservations of Tordella [47] of a type of melt fracture called ripple. This phenomenon
shows hysteresis loops, double-valued shear rates at certain stresses and spatially
segregated flow regimes. Similar ideas have also been used to explain to phenomenon of
necking occurring in cold drawing of polymers {8].

Regirer and Rutkevich (36] have considered fluids of the Reiner-Rivlin type which
exhibit change of type. Their constitutive law is

T = -pl + nf(II)D ,

1
where D= 2 (Vg + (VE)T), II = tr Dz. Written in terms of a stream function

g = (uv)s= (ty,-vx), the equation governing steady two-dimensional flows is as follows.

4 4 4 2 2 2
4 ¥ 2y IR 3 3y Iy

(3.7) w %¢f a1[a i 41 + 28, =555+ day g ( 5 " 2) = H(Y) ,
Ix dy x93y 9 Ix

wvhere H(Jy) 1is a nonlinear thrid order operator and the coefficients a are nonlinear
functions of the second derivatives of ¢. The characteristic curves y(x) are solutions
of
(3.8) a1y: + 443y: + 2a2yi - 4a3yx + a, = 0 .
It turns out that there are the following three cases
(1) £ + 2II £' > 0 (no real roots, elliptic),
(i4) £ + 2II £' = 0 (parabolic),
(141) £ + 2II £' < 0 (four real roots, hyperbolic).

The hyperbolic regions are those where the stress decreases as a function of shear rate,
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and the elliptic regions are those where it increases. The unsteady problem corresponding
to (3.7) is

P %E (A9) = L(Y) - H(Y) .
When the right side is elliptic, this problem is parabolic and evolutionary (see Gelfand
[14)). When the right side changes type, evolutionarity is lost and Hadamard instability
occurs. Changes of type and Hadamard instabilities can occur in rheological problems which
are not esssentially one-dimensional and need not necessarily be associated with non-
monotone shear stress-shear rate laws. An interesting case of this type arises in a
stability analysis of plane Couette flow by Akbay, Becker, Krozer and Sponagel {3], which
they suggest as an explanation for melt fracture. In order to obtain a manageable
squation, they introduce the "short memory approximation”. This means that, in the memory
integrals occurring in the equation for the disturbances, only terms of first order in the
relaxation time of the fluid are kept. Proceeding thus, they find the following linearized

equation for the stream function in two dimensions:

N 2 4
(3.9) p(-- + Kx a—a-)Aw - (w - .y a_ai— Ly + 'Ly + 4_1_%,
X4 KT 9xg9%,  axjax
VU= g%; = 0 at Xo = 0, X3 =h .
2 a2
Here L denotes the operator — T3 The problem is posed in the strip -» < x4 < =,
ax Ix

0 < x5 < hs x 1is the shear rate of the basic Couette flow and 7t(k), N1(<) are the shear
stress and the first normal stress difference as functions of the shear rate. Akbay et al.
find that (3.9) admits exponentially growing solutions if
N
1
(T) x

11"
K

> 4.

(3.10) Ve =

It was pointed out by Ahrens, Joseph, Renardy and Renardy (2] that this instability is

associated with a change of type. If we consider the symbol of the differential operator,

i.a, 1f we formally set 2* =-d, 2. ia, 2 . i8, then the left side of (3.9) becomes
at 3x1 3x2
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(3.11) p(o + ltxzi.c:)(-u2 - 92) '

and the right side becomes

N
PR

1

2.2

) 4t

(3.12) -(n )(u2 - Bz)us + r'(u2 -8 + ;—0252.

This homogeneous fourth degree polynomial is positive definite for We < 4, but indefinite

for We > 4. For We > 4, one thus expects short-wave instabilities of a catastrophic

Re ¢ becomes arbitrarily large as the wave length tends to zero. A more

nature, i.e.

precise, rigorous analysis and some criticisms of the assumption of short memory are given

in [2].
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4. QUASILINEAR SYSTEMS

4
l
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'
\
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i
1

The analysis of the equations of viscoelastic flow will be framed in terms of systems
of equations of first order. We consider linear systems and quasilinear systems. We write

the quasilinear system as

n
(4.1) }, 5 —-S' x = (t:x11x sesesX. ),
gm0 ~t %y 2 "

where u = (u1,u2,...,uk) is a k vector and al are k x k matrices which like £ may
depend on x, and on the components of u. If }, 1is independent of u, and f = Bey,
then (3.7) is a linear system.
The following definitions apply to both linear and quasilinear systems. A surface
§ defined by the equation ¢(t,x1,...,xn) = 0, 1is characteristic with respect to (4.1) at
x = (tyxq,eee,x,) if

n
: 3
(4.2) dget( Y a, ) (x) =0 .
gm0 “F 3%y 0T

If ¢ = X, - f(xo,...,xn_1), then

( n-1 af ]
(4.3) det(a ~ ) a, 3—)=0.
n o0 5. 3xz

Anyone of the n + 1 quantities 8¢/3xz in (4.2) may be regarded as an eigenvalue., We
shall say (4.1) is hyperbolic provided that A = hu is non-singular and for any choice of

the real parameters (Xz, £ =0,1...,n3 £# u), the roots a = a, of

n

(4.4) det(ap - | Aa) =0
=0
Ly

are real and are associated with k linearly independent characteristic vectors V¥

satisfying
n
(4.5) oAv = ) ApBov .
L=0
Lty
13~
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h‘-‘ First order systems can be of mixed type with real and complex eigenvalues, neither .

& .

- DJ -,
o totally elliptic or totally hyperbolic. -

—
.4

We are interested in two dimensional quasilinear problems of the form

8¢ “
» du 3y 3 -
T (4.6) Asg+Bax *t ¢ ¥y f. ;
We consider one-~dimensional evolution problems in which ¢ = 0 and steady problems in )
:*-: which } = 0. For evolution problems we suppose that A 1is not singular and write '
o ~
{\ du du '::
'.l\l (‘.7) K* g-;;- g . -..
, The characteristic surface is ¢(x,t) = 0 and (4.2) becomes
<,
~a % by .
3 (4.8) elet(at 1+8 -5-,’:) 0. :
&
: : On ¢(x,t) = 0, we have
3 § 2 4 . 2 i
AN 4 = 22 ax + 32 At = 0. y
. Hence, (4.8) may be written .
ax
s (4.9) det(p - 3¢ 1) = 0,
¥
N where dax/dt is the slope of the characteristic.
P

A linear system of the form (4.7) is said to be of evolution type if B has only real

»

eigenvalues, hyperbolic if of evolution type and B can be made diagonal, strictly

L ARS

hyperbolic if B has simple real eigenvalues.

’ AN - h U R

ﬁ" It the Cauchy problem for (4.7) with £ = 0 is well-posed, then it must be of
s 1 (At+ux)
_ evolution type. Solutions of the form u(x,t) = Be are bounded for large |t| 1if %
DY -
N and only if the eigenvalues A/u of B are real (Gelfand (14]). ‘-
'S) -
z, Suppose u(x,t) 1is given on a curve ¢(x,t) = 0. If this line is characteristic then :-
N »
) .-
Al the equation 4
. i
i -dE - 3_\_1 de i ax -
NG ds 93t ds 0Ox ds ' .
Y i
s "_%
where t(s), x(s) is a parametric representation for the curve ¢ = 0, and the o
~ o
I: quasilinear equation (4.7) cannot be uniguely solved for the 2k derivatives du/3t and .
5 ::, du/dx. This special condition requires that the determinant of the coefficients of the ::
d‘\n )
N ~
] =
. =14~ N
X
; i
"3 o
sy <
3 e .-'
’ »
k) ‘e
» R
3 -
A

O
‘P
..

.
-
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o
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1 )
Lz
N
-l
5,'7
‘ﬁ"‘ derivatives vanish
‘-':‘w
( 1
2 det[ ] = aee[3 -5 0.
o lat 1ax s
\\'-"
\\;-.'
_,-.: Identical considerations apply for the quasilinear steady problem
du du
N L R i
:.5:'. Such problems are frequently assoclated with a change of type, like transonic flow, in
.t
L which some regions of flow are subcritical and some supercritical. A typical example is
> Tricomis equation. Other, more relevant examples are derived in §8-11,
.
";.'-: It is not always possible to assign a definite type to a system of gquasilinear
e
SR equations. We may have both real and complex eigenvalues. Nonlinear problems of mixed
' type have not been thoroughly studied by mathematicians. Some special results have been
e
TN given by Mock ([30]. Here it is perhaps useful to give some simple examples from
.“' e ’
;::- hydrodynamics.
\.: Consider first the Euler equations for the flow of inviscid, incompressible fluids in
) two dimensions
N (4.10) plu*Vig +Vp = £, divy=10.
LG
\%ﬂ Let (u,v) be the components of u with respect to x and y. Then we can write (4.10)
\ -
Ld
~ as
. (4.11) Bi°g, * Bp'g, = £
.‘.“
4oy § where
W 3 %
D g= (wv.p) g =33 9, = 37’
o £ = (£,,£5,0),
X U
I s.' au 0 1/
> a;, = {9 u o |,
o4 " le o o
A
N v 0 0
- 3, = 0 v 1] .
A
'
M
2
- -15=
o,
2
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The characteristic equation for (4.11) is

a
set[&a, - 3,] = (v - L )((E)?2 4 1) =0,
Hence
%% - E, streamlines are characteristic,
R

The presence of imaginary roots means that (4.11) is not hyperbolic. It is not elliptic

because the determinant of the matrix symbol of (4.11)

1
uE1 + sz 0 > 51
det 0 wE, +vE, e e, + i@ eed)
1 2 p "2 1 2 1 2
951 oEz 0

vanishes for uE1 + sz = 0,

Another example is from the theory of irrotational water waves. In this case the

velocity potential is elliptic but the height function is governed by a hyperbolic equation

giving rise to water waves.
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5. CONSTITUTIVE EQUATIONS

A ccnstitutive equation relates stress to deformation. The stress in viscoelastic
fluids depends on the history of the deformation. Usually the history is defined on some
strain measure. The stress in Newtonian fluids depends on the instantaneous value of the
velocity gradient, it does not depend on the history of the deformation but only on the
instantaneous value of the symmetric part of the veiocity gradient. 1In a viscoelastic
fluid the fluid has instantaneous elasticity. Elasticity is present also in inviscid
compressible fluids. For unsteady problems elasticity is associated with hyperbolic,
rather than parabolic response. In the elastic case discontinuities propagate along
characteristics which do not exist in the viscous (Newtonian) case. It is necessary to be
more precise about the difference between an elastic and viscous response.

Many constitutive models have been proposed. Each one leads to different answers for
the same problem though some groups have similar qualitative properties. In problems of
changing type the linearized part is of primary importance. The linear part may be of
three types:

1) Constitutive equations with some viscosity. The viscosity which we have in mind
is that which rheologists sometimes assoclate with a retardation time.

2) Constitutive equation without "viscosity". Integral type constitutive equations
with smooth kernels, and various types of rate equations in the class called Maxwell models
are of this type. These kind of equations allow propagation of rather than smoothing of
discontinuities. In some nonlinear models {16), [28]), [43]), [44), [51] discontinuities may
arise, as do shocks in gas dynamics, from smooth data.

3) 1Integral type constitutive equations with singular kernels. These are in a sense
intermediate between 1) and 2). Depending on the type of the singularity, the wave speeds
may be finite or infinite. However, even if they are finite, i.e. real characteristics
exist, there is no propagation of discontinuities (see Chapter 6).

The stress in an incompressible fluid is given by

(5.1) T"PJ"I!

where I, the determinate stress {50], p. 176 (sometimes called the extra stress (48]),
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may be related to the deformation, whilst p, the reaction pressure, is determined only
through the equations of motion. An example of T in the class 1) of constitutive
equation with some viscosity is the Jeffreys model with two time constants, a relaxation

time X1 and a retardation time Xz. This model may be written in rate form
a; 3A
(5.2) T+ Friiai s nAi It '

where N is a constant, called the zero shear rate viscosity, A = Vg + VgT, u = ulx,t),

or in integral form

na A t
(5.3) =2 atuxe)] + 1 (1 -22) [ alulx,tlexp(HE =) .
= x1 - e - A“ A‘I - = x1

The constant nA2/11 is a second viscosity which is equal to the zero shear rate viscosity
when Xz - 11. It is this viscosity that we have in mind when we talk about
"with" or "without" viscosity. In §6 we show that (5.2) and (5.3) enjoy a certain general
status when they are regarded as holding only in mutions which perturb a state of rest.

The Maxwell model arises from (5.2) and (5.3) when Xz is put to zero. In §6 we note

that the Maxwell model permits propagation of waves along characteristic with a finite

velocity of propagation, but such propagation cannot occur for Jeffreys models; more
precisely the viscosity term in/k1 smooths discontinuities in the same way that
viscosity smooths the discontinuities of solutions of Fulers equations for an inviscid
fluid.

Nonlinear models can be classified according to the type of their linearization.
Popular models of the rate type include those due to Oldroyd [34]), Leonov ([25], Giesekus
[15]). These models generalize both Maxwell and Jeffreys type fluids, i.e. some have
"viscosity", some do not. Popular models of integral type include K-BKZ single integral
models (4], [22] which may be of type 2) or 3) depending on the nature of the kernel, and

the model of Curtiss and Bird (11], which contains a viscosity term.
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We shall do some work with a three constant rate equation of Oldroyd type

Lyt
:~:'Jf (5.4) X-DT*'I‘“& .
'::- Here D/Dt is an invariant time derivative
t.\
~
- Dt 31
(5.5) oo = 5c t (we¥r 418 - 8r - al@p o+,

where =-1< a < 1, =l (u+wT), g= 3 (vu - WT). The upper convected Maxwell model
2 - - = 2 - -

L
::’ has a = 1 and
o 3 .
(5-6) ot " ae teTr - Vur- e
\e
- where (Vu) 13 = 3u i/ax 5° The lower convected Maxwell model has a = -1 and
\ '
i
LY
\a
< pt 3t
= = T
s, - — . .
9 (5.7) vl T (ue?)g + 1Vu + Vu't
;\: The corotational Maxwell model has a = 0. The integral model
)
€t
2
* -
ﬁ\;? n t -1
o (5.8) T - _‘j' expl-(t = T)/A)Ig, (1) - 1ldr
A
::\: is an alternative form of the upper convected Maxwell model (a = 1). The rate form
n
_ﬁ:‘ (5.4,6) may be obtained by differentiating (5.8) partially with respect to ¢t, holding x
.*\' fixed. The expression
AL Nt
] (5.9) 1= | expl-(t - IAI] - g (T)]ar
J‘-", AE o t
o
Y
o
,':-,‘ is equivalent to (5.4,7) with a = -1, in the same way.
o Rutkevich (40], ([41] studies differential constitutive models (5.4) of Oldroyd type.
NS
Cd
:‘ $ He linearizes these equations and the equations of motion at a state of no motion (uy = 0)
>
»
Y o and constant stress. He finds that a change of type leading to imaginary wave speeds and a
oy
- Aadamard type instability occur if the principal values of I satisfy certain

inequalities. If we denote these principal values by T > 1, > Tqs then Rutkevich's
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‘}Qﬁg instability criterion reads as follows:
‘Y
\ <=3, a=1,
n
(5.10) ‘l'1 >-x, a=-1,
1'4|"r3>‘2r"l a=20 .,

In order to assess the significance of these results, it is necessary to look also at
the integral models (5.8) and (5.9) corresponding to (5.4). Since g;’ and g, are
positive definite matrices, we find that T3 > - % for a =1 and Ty < % for a = ~1.
Thus Rutkevich's instability criterion can not be achieved and must be considered
unphysical. This was also noticed by Crochet {10] who proved directly from the
differential equation that T3 > - %- or, resp., T, < f' for all time, if this is the case
initially.

Renardy ([39) has shown that in fact loes of evolutionarity never occurs for a = 1.

These two models are special cases of the Kaye~BKZ model [22], {4], which has the form

t
IW -1 W

(5.11) 1= [ at "(Tz‘ﬁc (8) - 37— C,(a))as .

- 1 2
Here a is a positive kernel and the "strain energy®™ W is a scalar function of
Iy=¢tr 9:1(5) and I, = tr st(')' Renardy proved that the initial value problem is
always well posed, i.e. Hadamard type instability cannot occur, if W satisfies a strong
ellipticity condition of the same form as in nonlinear elasticity. This condition is in

particular satisfied if W is monotone in both arguments and a convex function of /11

and I,. This obviously includes the cases W = I,, W = I,, corresponding to (5.8),

(5.9). No such objections can be raised in the corotational case, a = 0, 1In fact, we

¥ \Q..:-
" q
‘:F:- need only restrict attention to motions where { = 0, and [ and D are spatially
ety
:§:: homogeneous, to see that (5.4) allows T, - T, to reach any value. The instability in
s this case is therefore genuine.
[ Ayl
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It is instructive to look at special flow geometries. For time-dependent simple

shear-flow, we have [21]

t e t
1= | ;—e (e S)AK(s)cos[J 1 - az | x(t')at*)as .
- s

Differentiating this with respect to t, we find

|
'1
i
¢
K
4

] t t
n ~(t- A 2 2

T t = x(t)[;-- /| xe (=) A o)/ 1 - a sin(Y 1 - a® [ «x(t')at')as]

SR - 8

n_‘--\'

e + lower order terms .,

-~

e

> A change of type occurs when the expression in brackets changes sign. For lal < 1, it is
. o possible to congtruct histories for the shear rate «x(s) such that this is the case. For

s Ll
P ™,

J': 3 steady shear flows, K = Kos the expression in brackets is positive and there is no change
o4

et

:_I:.‘ of type, even though the shear stress-shear rate law for a # t1 is non-monotone. The

A
case of simple elongation was congsidered by Renardy [38]. He finds that a change of type

PN
b can occur for -1 < a < %- Although Rutkevich's instability for a = t1 is unphysical it
.:_-t' is nevertheless relevant for numerical calculations (see Crochet [10]). The reason is that
o

::.':'. at high Weissenberg numbers the eigenvalues of I can be arbitrarily close to the stability
i boundary i‘- Numerical errors can push them beyond this limit, with disastrous results.

s
',

Most of the constitutive equations which have been proposed, all the ones considered

here, are simple fluids in which the stress is determined by the history of the relative

Yyt &
F XA
AT T

-
N
A gradient of the deformation
Et(l(rT) = vxt(l‘:T) ’
»
AN
B 4 where
-
AS

uly, (x,7),7) = 3y, /37

N

is the velocity of the particle x = xt(§,t) at times t < t. The constitutive equation

satisfying material objectivity may be expressed by a functional ({48,p. 80]

" ‘. "
R

"
2.0
A

t
(5.12) Uxt) = 7 (g (x,71))
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- In order to give a precise meaning to an expression such as (5.12), it is necessary to .
s :

*
R

|

specify the set of arguments on which F 1is defined, called the domain of F or dom P.

8

Saut and Joseph [42], extending ideas of Coleman and Noll (9], have proposed to classify

]

N A
'-'.\ N
e constitutive laws according to the choice of this domain. Roughly, this associates the Al
~e N K
: :: nature of the stress-strain relation with the deformations which are allowed. In the -
T j

| linearized case the stresses which are allowed are functionals in the topological dual of ¥
- dom P. The smaller dom P is, the larger is the dual, i.e. the more constitutive laws are -
I“\‘- ;
o, .t 0 -
e, allowed. To he more precise, let gt(r) be some given history and g(1) = g{x,t - 1) be »
.'-".. o .-v
a small perturbation. The linearization of F relative to C _(T) can formally be written .
A as an integral

)
ol
o 0 t 0
L . T 7)) = T - T)ecl(t)dr .
AN (5.13) r1[gt( ) lgtt)] _i K(g (1)t )e (1)
d'.}' T==00 -

v
~."‘< The class of admissible kernels K depends on which deformations g(T) are allowed. If,

“ -
Lyl
-':r" following Coleman and Noll, ¢ is restricted to a weighted Lz-space, then K must also be
- =

Q\I -
:.:5. in a weighted Lz-space. If ¢ is restricted to a Sobolev space, then Dirac measures and
»re

derivatives of Dirac measures can be included in K, thus admitting Jeffreys type models.

‘.:-:-' To see the effects of hyperbolicity clearly we exclude these cases and adopt (5.13) ‘j
<+ .\‘: :.
d::",'. with a smooth kernel as the basis for our study of change of type. K
A o

v . .
)'.:, It will be useful in what follows to specify the quantities in (5.13) more :
N 3
precisely. Let b
e 0 {
(5.14) X (%, T) = EV(x,T) + E(x,T) 5
C -]
O be the particle path for -
.':'J 0 N
- x =X bt = E(xt), -
. where §° is the position of x in some given motion and E(x,T) is a perturbation with m
:-:: E(x,t) = 0. OQuadratic and higher order terms are neglected. To this order of
A -
P approximation -
._, -.
27, .
: I
(5.15) gt()_:,ﬂ = gt(lc,‘l') + clx,1), -
9
\-l

!

N

N

1

-~ A
WY




4
N4
-.‘\.
N
JQ?
N h
N where
ny 0 0,Tg,0 .0
( (5.16) gt(XJT) = (VE ) Vg v gt(x't) = ;'. ]
. v 0 Tv v Tgr0
. clx, 1) = (VE7)°VE + (VE)'VE™, c(x,t) = 0.
< -
‘~S: Let the perturbed extra stress be denoted by 1 and the unperturbed extra stress by Io-
)
J\J: The total extra stress is ot I where
5 .
N T, = : elx, 1)1,
R =0 T == =t
- (5.17)
s t 0
o 1= | EIg(x,1),t - tlglx,T)ar .
-t =

We assume that K is a smooth function. Applying the substantial derivative

[
e

0
(g— + uo°V + where u is the unperturbed motion, we obtain
t -

24 ' ) 0 t 0
- (5.18) R A _‘{ K(zp + v *V)gix,Dar
A_W =
:f + terms of lower differential order.
l’;
i%ii Noting that the position at time T of a particle must have the substantial derivative
zero, i.e.
) ag, 9y, (x,T)
'\J.:-. (5.19) ax -t ulx,t)v x, (x,7) =0,
Ey
N we find 0
- i 0 0
— . -
": {5.20) 3t \_1 (x;t) Vxé 0 ’
N % o 0
u s == +u (x,t)VE + vix,t)eVE =0 .
QS‘ it - x= == x=
) This ylelds
2]

(B + @m)g = (G + @m)oe®og + 7o)

= el (2 v wem)e) + (T + wev)el)TvE]

X |

+ lower order terms
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- -VQOT-V(g-VQO) - (v(!,vgo))wvgo
+ lower order terms

- -(VQO)TVYVQO + transpose + lower order terms -

By inserting this in (5.18), we find that the principal part of the constitutive equation

is given by
(5.21) [g; + V)1 = MxE)VVxE)
where
ft a;: 8;:
M - - K dat .
ijmn — £ 513 3;; 5;;

Equations like (5.21) can also be derived when P is linearized at unsteady flows (§12).
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6. SLIP SURFACE PROPAGATION IN PROBLEMS PERTURBING REST

In problems which perturb rest we have Eo = x, :0 = 0 and

t
(6.1) T = | G(t - 1)a_ [ulx,T)]dT .
= o =] - -

A Newtonian part of the stress arises when
G(s) = ud(s) + gis) ,
where 6(s) is a Dirac measure and@ g(s) is a smooth kernel. Thus

t
(6.2) I=uplulxe)) + | glt - T)A [ulx,T)dT .
Ed

In the special case when g(s) is in exponential form (6.2) reduces to the model (5.3) of
Jeffreys with u = nlz/k1. We introduce u here and elsewhere only to notice that if
is small the underlying dynamics is close to u = 0 dynamics. When u = 0, the dynamics

is governed by

at t

(6.3) F¢ ~ G(0A [ulx,£)) + [ &'(t - Tp, (u(x,T)]dT ,
-y
and
du

(6.3), Pac*tVp-alvi=o0,
where
(6.3)4 divu =0 .

Equations (6.3) are a first order system, linear in the derivatives of p and the
components of u and I. If G(t - T) = const exp{-(t - T)/A}, then the last term in
(6.3)1 reduces to -:/X- In the analysis of characteristics using the Maxwell model the
term 1/X is of lower order and it does not enter into the analysis of characteristics.
In general, for smooth G', in (6.3) the integral is of order -1 in t and +1 in
x, hence of order 0 as an operator in x and t, and is thus also of lower order.

This shows that we can analyze first order systems for general kernels; we do not need

special models.
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The case of one-~dimensional shearing motion can be used to discuss the effects of

viscosity, wave speed, wave amplitude and classify the kernels. In this case (6.3) reduces

to
t
at _ 8u . - du(x,1)
Te G(O)ax+-‘{ G'(t - T) S ar
(6.4)
2u a1
L T i
We may write (6.4) as
g g
(6.5) etBy;tE-o,
where
u
g=[3.
[0 1/p
B=-lg0) o~
0
£~ .
t du(x,t)
' - guix,t)
_i 6t - 1) = dat
The eigenvalues
(6.6) C = ¢ /G(0)/p

of B are the wave speeds along the characteristics
X t ct = const.

It is instructive to review the results of analysis of the following problem, known as
Stokes' or Rayleighs' problem, for a viscoelastic fluid. A fluid occupying a half space is
at rest for t < 0. At times t > 0, the boundary of the fluid at x = 0 is made to move
forward with a constant speed. The problem may be described by the following equations

32u t azu(x T)
-u—2+fq(t-1)—2'—',
Ix b Ix

°
e
ﬂlﬂ

(6.7) u(x,T) =0, ¥vT1T <0,

u(x,t) is bounded for positive values of x and t,

0, t«<o
1, £t>0

u(0,t) = H(t) = {
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::‘. This problem has been studied by Narain and Joseph [33] when u # 0 and u = 0 and L:
o N .
Lol ..I

by Renardy [37] for u = 0 and singular kernels. Other authors, Tanner (46], Straub [45],

- |

y BShme (5], Kazakia and Rivlin [24] have studied the problem for special constitutive ’i
Y .
;,' models. Tanner used an Oldroyd model B, which contains a contribution due to Newtonian »
n““l »
X viscosity. This model does not require linearization, it automatically leads to a linear

problem. All authors solve the problem using a laplace transform with respect to the time.
. In the context of the present paper, the most interesting issue is the qualitative
L8
L behaviour of solutions in relation to properties of the kernel g. In particular, wave

speeds and the presence or absence of discontinuities are of interest. These questions

-

were addressed in (33], [37). Not surprisingly, the crucial factor is the asymptotic

Ay
'L':\ behaviour of the Laplace transform of g at infinity or in other words, the symbol of the
=
.\‘.‘- operator in (6.7). The qualitative nature of solutions is thus determined by the type of
..G.‘ N
wi the equation. With u(x,®) denoting the Laplace transform of u{x,t), equation (6.7)
A4 :
o becomes
‘\J‘ ~ ~ -~ -~
o (6.8) pua = wGlwlu__, ulx =0) = 1,
\:" xx w
‘:-: where G(w) is the Laplace transform of G:
o - * -wt
e Gw) = [ G(t)e at .
~*, 0
7,
L0
\'(: One finds that
.'
:‘5 . G(0) , G'(0) 1
. Glw) = o + 3 + o(—z) R
w w
-
(S
.’:‘, if G" 1is integrable. 1If the character of solutions is determined by the symbol, we
-.'_:1
o~ ] should therefore look at the problem
L]
‘:? zA a 1 A
o— pwa = G(0)u + — G'(0)u ’
- xX (] XX
LA
:‘-: or using ! . - 1eto)
. ’
N o) + 2groy) S U g0)?
"
n"
-— 2 ~ [ ~ -~
Y pw pwG' (0) a=u .
[
2 G(0) G(0)2 xx
S
l\'.'
) -27-
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:};} This, of course, corresponds to the equation
St
( 4 pG' (0)
—_—u -~ u =u .
v G(0 tt 2
NG (©) Gtoy2 v X !
- \-.. S — ‘
f\;: From this one expects the singularity to propagate with a wave speed c = YG(0)/p and to
h-l&: decay with an amplitude factor exp(tG'(0)/2G(0)). 1
o ¥,
Coleman and Gurtin [6], [7] proved that if the acceleration was discontinuous, then
ib’: its wave speed and amplitude must be given by these expressions. In [33] and [37] it is 1
i
G
;ﬁ {- shown that these expressions for the speed and amplitude could be derived for the problem
.-‘
.o r
. (6.7) without assuming discontinuities of acceleration. The demonstration of propagation
p in [33) applies to propagating steps in displacement (propagating delta functions) as well
.
N
o as steps in velocity.
e
}:}: If a Newtonian term is included in the constitutive law, G contains a contribution o
X -
Rt uS(0), and G(w) at * behaves like O(1). The equation becomes parabolic, and smooth
> b
aﬁ;: (analytic) solutions are obtained, As u + 0, a boundary layer forms around the shock
.
%j} front. This was shown numerically in (46]. An analysis of this boundary layer is given by
f}f Narain and Joseph ([33].
” o "
N Renardy [37) studied the case where G does not contain a O6-function, but some
:J:J weaker singularity. Specifically, he considers the kernels
\*‘-‘
o o a 1
£545 (6.9) sty = ) &%, a>g.
A " n=1
R For a > 1, G(0) is finite, but G'(0) 4is not. The asymptotic behaviour of G(w) is
& given by
>
S - G(0) -2+1/a
A O (6.10) G(w) = + Olw )
o, (] o

.~
A%

As one expects, there is a finite wave speed c = YG(0)/p. Solutions are zero in front of

the wave and nonzero behind it. Across the wave, however, they are of class é'- If

a <1, G(0) is infinite, and the asymptotic behaviour of a(u) is dominated by a tem
O(w1/h-2) or O(&n w/w) in the limiting case & = 1, The wave speed is infinite and the
solution becomes analytic everywhere except at t = 0.

gimilar studies can be done for small perturbation of rigid motions, see the work of

Kazakia [(23].
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7. SLIP SURFACE PROPAGATION IN NONLINEAR SHEARING PROBLEMS

| TR R e v e

Coleman and Gurtin (6], [7) studied simple shear flows of a viscoelastic liquid, which

involve a surface across which the acceleration is discontinuous. They showed that in a

. .
e )

.

material with a smooth memory function (no Newtonian viscosity), these discontinuities

s 'y

propagate with a speed c = YG(0)/p. 1If the amplitude is smaller than a critical

amplitude, it decays with a factor exp(tG*'(0)/2G(0)), if the amplitude is larger than

1

R

the critical amplitude, it will reach ® in a finite time ("blow-up®"). This blow=-up of T
»

acceleration waves might be interpreted as development of a slip surface for the ::
velocity. No such result has bee proven. i%
Slemrod [44], Malek-Madani and Nohel [28], Gripenberg [51] and Hattori [16] have E

studied simple nonlinear modelas. They show by contradiction using Riemann invariants and
the method of characteristics that, for suitably chosen initial data, a global c1-solution
for the equation of motion cannot exist. This may mean the formation of a slip surface for
the velocity. This is suggested in particular by the argument of Malek-Madani and Nohel
(28], but no full proof has been given. Numerical evidence for the development of such
discontinuities was found by Markowich and Renardy [29].

Slemrod [43]), following a suggestion of Coleman and Gurtin [7], applies his result to
give an explanation of some of the various ingtabilities of shear flows collectively called
melt fracture. It is necessary that we interpret the proved loss of regularity as the
formation of a slip surface for the velocity. Melt fracture is an instability of flow of
molten polymers or polymeric solutions down capillaries. In the experiments (Tordella
[47]1), the polymer is forced down the capillary by high pressure. Extrudates leaving the
capillary which at lower shear rates are smooth and continuous, become rough (shark skin
effect), irregular and ultimately dislntegrnté. There are different explanations of the
different types of instability which can occur. These are reviewed in the paper of Petrie
and Denn [35]. None of the explanations can be regarded ae established. The mechanism
proposed by Slemrod has some possibilities in the case where fracture is associated with a
stick-slip phenomenon. There is some controversy about the presence or absence of slip in

experiments. If it does occur periodically, as it might in Slemrod's theory, it would be a

=20~
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candidate for the explanation of the wavy surfaces shown in the pictures of Tordella
[47). It should be noted that the theory of Hunter and Slemrod [17] requires an entirely
different type of shear stress to explain the type of hysteretic melt fracture which
Tordella calls ripple.

It would be interesting to have the conditions under which slip surfaces for the

velocity might develop from weaker slip surfaces or from smooth data.

=30~

ALY M SL LR LR SL TS
PR \"‘ L w._- \q. N h.\.u

T, "
1o S ARG )

T L T T T T T T T K A AT T T Y,

W W W SRR e




ERE R RS R AA MR S SARTRERE CE NS RN I -_L‘-."“q_"'--'-".'."l-"ﬁ.“‘_‘,Y»’.T_‘.‘V."ﬁ-'.“"U"}‘U_Ti:.'w‘_'.".‘—':‘*'.;1“'.1‘;ﬁ o 4 —;1;.1:_ v.; 1-‘;1:_— A AR A -FvTv—: -

exceeds one. Here U is the velocity of the unperturbed uniform flow, and c is the wave

b

. 8. CLASSIFICATION OF FQUATIONS FOR FLOWS PERTURBING UNIFORM MOTION :
Ultman and Denn [49] consider the equations for two-dimensional steady flow of an j
upper convected Maxwell fluid. They linearize at a motion with uniform velocity and zero j
stress, and they show that these linearized equations change type when a viscoelastic ;
“Mach” number i
(8.1 M= 2 o
¢ X

|

-

g

speed for propagation of singularities as considered in §6: c = YG(0)/p = Vn/(pX).

Ultman and Denn attempted to correlate some experimental observations of D. F.James
[18) with this change of type. James observes a sudden change in the slope of the heat
transfer curve as a function of velocity. This happens at a critical velocity, which, for
the polyox solution used by James, was about 1 cm/sec. It is not clear from the graphs how
abrupt this change in slope is, but there is a change of slope. Ultman and Denn also
suggest that the transition from subcritical to supercritical flow might explain abrupt
changes in the drag coefficient observed by A. Fabula [13]. Again, the idea is that the
critical velocity at transition is the wave speed c¢. They make an estimate of ¢ from a
molecular theory and correlate this prediction with the data of James. Of course any such
estimate can at hest be expected to give an order of magnitude, since the fluids used in
experiments are not really Maxwell fluids.

M. Luskin [27) studies the equations of Ultman and Denn as a first order system. He
reduces them to canonical form and investigates characteristics. The streamline is a
double characteristic, two characteristics are always complex, and the remaining two are
complex for M < 1 and real for M > 1. Each characteristic has associated with it a
canonical variable, which is a linear combination of the two velocity components, the three
components of the extra stress and the pressure. This means that two of these variables
can be discontinuous across streamlines, and two others can be discontinuous only for
M> 1,

We shall now show how results similar to those of Ultman and Denn apply to general

constitutive models without "viscosity". 1In linearization at uniform motion, the extra

=31=
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stress is given by

t
(8.2) 1= [ Gt~ vplulg,t)ar,
where
xy = ule - 1)
g =1, .

We assume G is smooth, positive and monotone decreasing. By differentiating (8.2) with

respect to t, holding x fixed, we find

ar 9 t
(8.3) Y ux;- G(0)Alu(x,t)] + _‘I‘ G'(t - T)Alu(g,T)]dr,

where the last term is of lower differential order. The leading term is the same as for

the Maxwell model, if G(0) is replaced by n/A.
It can be shown that the change of type is primarily associated with the behaviour of
the vorticity. Since we study motions in the plane, the vorticity curl u has only one

component, which we denote by a. We take the curl of the equation of motion, apply the

operation curl div to (8.3) and combine the two. In steady flow this leads to

320 320. t
(8.4) M - 1) =5 - =5 = [ 6'(t - t)ha(g)ar .
‘r)x1 axz -

The right gide is again of lower order. The left hand side is elliptic when M < 1 and

hyperbolic when M > 1. The elliptic roots found by Luskin [27] correspond to the elliptic

equations a = =AYy expressing the vorticity in terms of the stream function.
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9. CLASSIFICATION OF THE QUASILINEAR SYSTEM OF EQUATIONS GOVERNING
THE STEADY FLOW OF AN UPPER CONVECTED MAXWELL FLUID

l'-' IA'A‘ "' ._' '-‘ ..' '.'r Il .' .. 4.'!:

The flow of an upper convected Maxwell fluid is governed by the following system of

ARATRN
A A A A A} ..

equations
du

Poc+tVp-dlvi=0, dlvu=0,

(9.1) T Cu
= T def

TG -ver-p Ve = m S )

We consider two~dimensional flows. In view of the applications in Chapter 10, we want to ;

write the equations in both Cartesian and polar coordinates. In cartesian coordinates, we

Ay

set

(9.2) u=(uv), T= : ;] .

We then obtain the equations

6 +ud + V0 = 20u - 2Tu_ =~ 2pu_ = =0/ ,
x y x b4 x

1T, +ut_ 4+ vT_ - - - +v)=-T
e ¥ UT, v Yu ov, u(uy x) A,

..J

Y, touv, + vyy - 2ty - 2Yvy - 2uv& = =Y/x ,

-
0
.
w
~—r
[
L

+ + + - - =
p(ut uux vuy) px ox Ty 0,

p(vt tuv o+ vvy) + py - T " YY =0 ,

u, + vy =0 .

The subscripts denote differentiation. 1In polar coordinates, we denote by u and v the

R
o)
3
3
3

radial and azimuthal velocities and by 0,7,y the components of the stress in polar

coordinates. We then obtain the following system

vo u,

g
R + — - — = e =
(9.4) ct uor + T zaur 2t - 2uur Y !
vt Yu
a [:] 9 T av v
_— L = . - =) LY _ BV
Te PO, v r Ve u(vf r ) A r r '
vy v, v
-8 | Lo _x_2vt 2
Yt + uyr + T " 2tvr 2y - 2u - 3 o + o Yy +uw),

-33-
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.\vl,r. :,
y 19 v2 g -X ‘.:
o\ Plog +uo, +v T wp -0, m =l 7
Y s
( vv P Y
&, S . .pu 2t ¢
" p(vt rouvp t )+ r Y r 'r ' RS
\- /‘::
.._ v .‘\'
Cal ) u .,
LS —_—-= 3
:l..: “r + r = r .._‘
. ».
:;:"- The terms on the right of (9.3) and (9.4) are of lower order and do not enter into the o
?_‘7‘ analysis of characteristics. The systems on the left are identical if we make the :
4] a2 3 13 R
tr identifications % 37 and 5; ~ 36
y We consider steady solutions of (9.3) and (9.4). Thus we put the time derivatives
N :
P A )
{\: equal to zero and introduce g = (u,v,0,t,Y,p). Equations (9.3) and (9.4) are of the -
n' ..
*ﬂ.‘ respective forms ‘::
\G '-
) (9.5) 2g, + B, =
E
pALW and v
¥ »
-"j' (9.6) Aq_ + ; _‘3._9 = ; . :
:1 hd =gr = r =’ ".
:3 Characteristics of (9.5) are determined by the eguations 2
iy -
| & .
(9.7) det(SX acg) - mtg) =0 . -
A With a = ~ 3L, thig leads to v
ax >
AN 2 2 2 2 2 --
:- (9.8) (au + v) (1 +a)(2ar =p(au+v) +a 0 +Y + (1 +a )yl =0, "J
.‘.l b
Y Hence the streamlines N
i, *e
a
(9.9) Ei' u-v=0
L) '..
{\. are double characteristics. There are two imaginary roots a = + i. Finally, the last ‘
\ bracket yields ':
o R
Wi D
2 L3
- - - + + + + + !
(9.10) 8y _puv -1 - + {T 20Tuv = (p + y)(u + o) pv (u g) + pu (u +Y),/2
u+0~-pu (u + 0 - pud)? -
<
These characteristics are real or complex depending on whether the argument of the square X
root is positive or negative. This argument of course depends on the solution. It should p
be kept in mind here that the integral form of the Maxwell model imposes certain N
~34-

T, -'._,..," q_q, \-.-.\\.\\\'sx'
" > J' o {._ et

I\IJ'-F




¥

“~
~
-
.
e
-

-~
o«
A
L

- ﬂ‘.
s o ":

Cl s
RN Pl
ERV I v}

A
l"t

s‘f[ N

A

D « M
S P A AAL

-

ry
(NN

LA

;9

[ A ]
B

R AR

&

T
)
W

restrictions on the stresses (see Chapter 5). These roots are the ones which exhibit a
change of type.
dy
The imaginary roots - = % i arise from the identity
(9.11) g =%,

where [ is the vorticity and ¢ is the steam function. It is easy to show that

2 2 2
3

(9.12) (u + 0 - pu?) —-g- +uty - ovd) 3—% + 2(1 - puv) g_aL = lower order.
Ix dy xoy

This shows that the interesting characteristic roots (9.10) which can change type are
associated with the vorticity. Using (9.11), we find that the quantity on left of (9.12)
with ¥ replacing ¢, is harmonic to within terms of lower order. In polar coordinates,
the equaticn for chgaracteristics becomes

(9.13) r %% = r.h.s. of (9.10),

with u,v,T,Y,0 interpreted as the physical components of velocity and stress in polar

coordinates.
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10. CHANGE OF TYPE IN SHEAR FLOW, EXTENSIONAL FLOW, SINK FLOW AND
CIRCULAR COUETTE FLOW OF AN UPPER CONVECTED MAXWELL FLUID

In this section we consider the problem of hyperbolicity of the linear equations
perturbing some special solutions of (9.1). The characteristic equations (9.10) and (9.13)
are useful for this. To compute the characteristics of the perturbation we need only to
replace the u,v,7,0,Y in these formulas with the special values that (9.1) requires for
special flows.

(1) First, we again consider the uniform flows discussed in §8; u = U,

vaTtT=Y=0=0, For these we find from (9.10) that

(10.1) Loy [S—,
M -1
where M% =~ Uz/cz, c? - n/rp(= E%QL] is the wave spread. The characteristics are

straight lines which start as lines perpendicular to the flow at M = 1 and tilt more
toward the free stream as M > 1 is increased.

(1) Our second application is to shear flow. We find, using (9.3), that
(10.2) u=gKy, T =0Kk; 0 = 2nAx2, Y=v=0.

where the shear rate « 1is a constant. Inserting the fields (10.2) into (9.10), we find

that
72
K—i— - szz -1
(10.3) . A t < .

1
x®=
dx 2 2 2.2
22 _x'y 22 _x'y“y2 2 2
1+ 22% 2 [1+ 22% c2] e 4 ”2¥-A2.<2—1

[+

The vorticity is hyperbolic outside a strip defined by

2y? 22
(10.4) —32L—>x< + 1.
c
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(1ii) 1In extensional flow, we find, using (9.3), that
(10.5) u=gsx, Vv=-~gy, T=0, 0m=2ng/(1 ~2\s), Y = -2ns/(1 + 2}s8),
where 0 ¢ 8 < 1/2)A. The stretch rate 8 is a positive conastant, small enough to keep ¢
bounded and positive. The unbounded ¢ at s = 1/2A is one of the many undesirable
properties the upper—convected Maxwell model. Inserting the field (10.5) into (9.10), we

find that

2 2 2
d - P8 XY 1] x_ _ 1/2
{10.6) 5% t { 3 + 25 11774,

u 2 2
128 "®* Ji1-4%2* P

bz-__E__.

I T T -
ps (1 + 2)s)

932(1 - 2\g)

,

We get real characteristics, obeying (10.6), outside the ellipse

2
X
3t > 1.

(iv) oﬁr fourth application is to sink flow. Here we must work with the polar
equations (9.4) and (9.13)., For sink flow
(10.7) u=-0/r, Q>0 is the sink strength,
v=T1=0.
From (9.4), we find that
40 L, 20 xo  2u_,

ar + r AQ

We find that

(10.8) o= 2m o/ .

From (9.4)4, we find that

a .2 _xx_ 2,4,
dar r AQ r

We next introduce ¢ through the change of variables Y = -u + p¢/AQ, where

a 2
3% - ¢[2+ {5] +r=0.

2
We require that ¢ be bounded as r~ * 0 and find

LA PP P G PP
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2 -r¥/29
(10.9) o = -r2ef /A0 e__;__ ar ,

where the last factor is an indefinite integral. For small r, we find that
N 0*-rzlogr>0.
Sy
Obviously ¢ is positive at every stationary point. The only stationary point is at
r =% and ¢ increases monotonically from zero to AQ.

N Turning next to (9.13), using (10.7-9), we find that real characteristics exist and

"t: are given by (9.13) when

2 2
{10.10) (w+ [ - (u+c)]-§%[&2—3ﬂ-u] > 0.
r ) o
A
O The condition for hyperbolicity is satisfied if
PO > 2n

PN
that is, when the flow rate is large. 1In this case the flow is hyperbolic in the circle

Y
O 2 _
s (10.11) r < 39—"—21’2

The differential equations for the net of characteristics covering the hyperbolic

circle at the origin is

A
2 2 *
pu - (u + o) pQ -an_u

2

Y

LAY

a2 - R __11_.1_7._.+/__2.th_
dr = =

S

y (v) Our fifth application is to Couette flow outside a rotating circular cylinder of
‘RS

A radius a. We suppose that the fluid sticks to the rod, and the rod rotates with an

a angular frequency £l. We assume that v = v(r), u =0 = 0. Then using (9.4)5 and (9.4),

we find that
v = Qaz/r '

'l

- t\ a
A

&

T = -2a2n9/r2 ,

and from (9.4)3

s,

Y = 21'2/u .

-
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From (9.13), we find that

r a8 | !i (1 - 412°2) -1..
dr 2 2 ‘
c r

To have real characteristics it is necessary and sufficient

2, aer a‘n? (1- 4x2c2)

I(x") =3 3 -1>0.
c'r r
Moreover, L(=) = -1
ar_ _ a%? [eJ\"’c2 - 1]
dr2 0224 t2
first increases, then decreages, with a single ma:imum at r2 = 8)\262 given by '1
4,2
T, = neid) - Ao, T
161" ¢ -“
which is positive when T
4 16X2c4 B3
(10.12) at > e L
Q el
If (10.12) holds then there are two values .
4
2 2 -
r2 = 8\°c X
¢ R >
Tty 1--3 : 4
Qa P
__\
at which E(r:) = 0. If ?;
a2 > a2 + & s o
2 H
f 5
then I(a) > 0 and the vorticity is hyperbolic with real characteristics given by (9.13) -
..d
in the annulus {:
22 v
32 < r2 < 8\c . *e
P!
16X2c4 .
1 - 1 - = .
2
Q"a 0
If (10.12) holds and :,:
2 o
az < 4X2c2 + -c—2 R 9
-
&
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- 11. CLASSIFICATION OF THE QUASILINEAR SYSTEM OF EQUATIONS R
< GOVERNING STEADY FLOWS OF A CLASS OF OLDROYD MODELS S

‘ The Oldroyd models under discussion are given by (5.4) and (5.5). When a = 1, this .
A A
.}4 model reduces to the upper convected Maxwell model which we studied in §9 and 10.
o We have ]
- . .
-.' -l
§ u 1 (u + v ) o~
x 2 'y x ¥
et 2 = ] _',-‘-
}’ Lo +v) v :-‘::
183 2 'y x Y '?"
1.;: , NS
o o 2 (l.xy -v,) _:
x 2|, - .
o s (v, =u) 0 .
2 x Y :I
, ~
‘} This gives rise to the following quasilinear system -.“:

f; o
R~ "
N uo, + vay + 'l.’(vx - uy) - a[2<1ux + ‘t(uY + vx)] - 2uux = ~g/A , g
: 1 a e

— - - - - + - ™ .

3, utr, + v‘ry +3 (o Y)(uy vx) 3 (o + Y)(uy vx) u(uy + Vx) -, %

t Iy
11.1) uy_ + +Tu -v)-al2yv +T(u +v )] -2uv ==-1 N

4 ( ) x ‘"y v x 2y v v %' v, Y ! )
\ .

_ P(uux+vuy) +px-ax-ry-o . .:;‘
" pluv  + wy) + P, - T " YY =0, _::'
Y 3
+v =0. -
u, vy >
h The analysis of characteristics follows the one used in §9 exactly. We find o
Y -

d characteristic directions, a = -dy/dx from the equation RN

1] ey
¥ (11.2) (1 + a¥)(au + »iota + % + (B0 - 1 - 2ma - 02+ N+ (1Y) =0, >
: corresponding to (9.8). We can prove that the vorticity changes type from elliptic to -9
*q o
4:.} hyperbolic when the sign of :-_.
" (1 el el -dara-uttrals@-ngeu-od e pw-n?

4 '_c
I changes from negative to positive. "

1Y
§ &

1 :-"

U =41~ W
<
-

i . ®
3 %
’c‘ e
&

~

%) L

RN

". ﬂsm A

[N A N WAL M Ny 0




For shear flows, we find using (11.1) that

VW WL ) ol (AN &

nk = _f_]ﬁ
1+ x222(1 -~ a2) %ef D

u=«xy, v=20, ’

g = Ax(a + 1)1,
Y = A(a - )T,
where k > 0 1is the shear rate.

Condition (11.3) reads now

22
nk
2

”» 2-
(v + ) = u]u+ 5—5——1

2 2
. [pszz - Kznx (a - 1)2 _X ni

5 T «2m] > 0,

(11.4)

2.2 2 2
2 2 -n“K x“nA 2, k“n)
px‘y“B > + B[55= (a - 17+ =5

2
(1 + a)° + )
D2

2
- (‘ d 1) 2 -E
where B def 5 KnA + p 5 *

If a 4is in the range -1< a < 1, B ig always positive, and (11.4) describes the
exterior of a strip in the x,y-plane (it is easy to see that the quantity on the right of
the last inequality is always positive).

In extensional flow, we find using (11.1) that

2n =2ns
u=ex, ve-sy, T=0, O=gIig Y™ TTzans’

1
where 0 < 8 < - for 1 >a>0 or 0<g<—— for -1€ a<0 (no restriction if
2a) =2al

a=20)
Condition (11.3) is now evaluated as
2 2
2 2 2ng(2a“is - 1) 2ng(1 + 2a")s)

2 2
p' x [u + _———] + ps Y [u + _—-—]
1 - 4a2X252 1 - 4a2X292

2 2
2 1 + 2a“) 2 A8 ~ 1
s [u + 2ns( . ; 2s)][u . ns(2a 232 5 )] .
1 ~4"2\"s 1=-4a")\"s

Let us distinguish two cases




o 2
.\ 2n -
(1) u + 2ne(2s lg = 1) ;'2 21) > 0 (this is the case for a = 1),

(. 1 - 4a")\"s

Then the region (11.5) is the exterior of the ellipse

&’
-
£ 2 2
2‘_41’3.1’
B

2

>

where

2ns(2a2).a + 1)

w 2.2 2

2 1 - 4a°)\“s
def

Dsz

o 2nl(2azla - 1)
. Wt T2 22
- 2 1 - 4a®2%s
:... def 9-2

-
)
-t

2
(11) w +2—"‘l"%%-'—’ < 0. Then (11.5) yields

1=-4a)"s

.i '.-‘l ‘b

0'_" o
N

3
PN
=,
1
Pl
A
-
PP

R

where

ol

a

2ns(1 + 2a\s)
v 2.2 2
1 - 4a°)\"s

Dlz

.
N

e
»

)
.
2,
A
>
.
~

Ao 2, -

Y u+2ns(2a As - 1)

Ol 2,2 .2

ox) 2 = - 1 - 4a°2%s
2

N os

3 Equation of t:e vorticity, steady case
‘ v
’\" One easily finds the equation satisfied by the vorticity ¢ = -Ay, where ¢ is the

.‘l 5
\' W, ., "":J"

stream function given by 3y x

Ad
‘\J 43~

j
-
.
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2 o4 hi :
(11.6) [-pu” +u+ 3 (1 +a) +5 (a- g+ 2 puv + 1)L ;
2 g - h = ;
+ [-pv ruty@a-1 g (’+1’]‘yy+"'°'det“xx"zmxy‘”c‘yy’ y
.l
This a mixed elliptic-hyperbolic second order equation. It is hyperbolic for ‘
A= 82 -AC > 0, i.e. exactly when (11.3) holds (see the previous discussion). :
Equation for vorticity, unsteady case. i
a
In unsteady planar flow the equation for vorticity is :.
2 :
(11.7) p(%% + (ueNg) + Afp a_g + 20(u*V) %f,_- d
at ™
2
s+’ -u-2ara+a -a))—i+2(puv-r)5-j;

ax

2
sovi -+ -Las 1)]3—;-] =1[2.0] .
2 2 2

dy
The term in brackets on the right hand side is of lower order and does not involve any time
derivative. The first term on the left-hand side is irrelevant for the analysis of the
type of eguation (11.7), but it shows how (11.7) reduces to the unsteady Newtonian case
when X = 0 (recall that u = -;l).

Equation (11.7) is of evolution type (hyperbolic) when

(11.8) %%, [n-x(-}‘,1 (1 - a) ~%(1+a))]-[n-k (-:-(1 - a) -!2-(1-»;))] <o,

(11.9) (Ta-a-2a+a]-nco.

»
NN
o

LA XX
A Y
AN A

[4

-44-

R

-
- J




i
i k
>} :
. -
L
-
Lz
s\ﬁ\ !
R \~.‘- ..‘
B .
A “
‘ : 12. QUASILINEAR SYSTEMS FOR SIMPLE FLUIDS WITH FADING MEMORY OF THE COLEMAN-~-NOLI, TYPE it
- -.. u‘
( The determinate stress I in a simple fluid is given by an isotropic functional of -
X n
:{: the history of the relative Cauchy strain G(s) = gz(t - s)gt(t -8) -1, i.e. "
n.'.\ W
~N N
: 7 ® y
N (12.1) grg” = £l g cteig"]
-8 8=0 !
]
4
- j for all constant orthogonal tensors Q- By taking the material derivative of (12.1), we i
~
= <
'$:4 obtain A
bj ar ag .
= T T = T .
K (12.2) e ~nlgselesel . :
A
2
e ‘4
'i*i where 51 denotes the first functional derivative of P. We have alreadynoted in §5 that
N P
¢ T
.:\: different choices for the domain of the linear functiocnal F,[QGQ |*] 1lead to different
o,
I. .
representations of P,. If, following Coleman and Noll, we assume that the functional is
«'?‘ defined on a weighted L2-space, we obtain an integral
:-«'.:-
. [ [¢] aG(s)
1, -.' © G(s
4 - =
,::. (12.3) !1[9 | dt] ~] K(8,8) —r—ds .
0 =
A
ror
-a:f Here K(s,G) is a fourth order tensor depending on s and on the value
<. -
:“3 {E(o), 0 €0 <=}, For the following, we assume that K and its first derivative (as
d =
\f% functions of s8) are integrable. In particular, it follows that 5 is uniformly bounded
=
. in s.
N
?'* The isotropy condition can be written as
L]
>, (12.4) X, (8,8 =0 0.0 0 K. (500)
£ . 13x1 %€ 21%3%KPa1%abca 88 ! -
]
;-w= This consequence of isotropy does not appear to lead easily to very explicit

representations for K in situations where G is not confined to special motions. Of
=
course K is symmetric in the first two indices, and only the symmetric part in the last

two indices enters into (12.3).

: AL
AL,

2L

We next note that the material derivative of G is given by
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(12.5) S5 §(8) = 5 (ET(OET(t - E(t = )E” (£))

= - T E (0)g(e) - GlaE(IET (6) - §- g(s)

dg(s)
ds '/

= -17G(s) - Gla)L -

where [(x,t) = Vu(x,t) 1is the present value of the velocity gradient. Hence, we find

nd 4G, , (s) d
(12.6) (f, Ky ypy (8:8) —5c— a8 = - (f) Ky gkr * KigpyCpy (898 = Ly (£
° dg(s)
- {) xijkl(s'g) o s -

It follows that

ar
S I
(12.7) e = Migp BTy (X8) + N (x0)
where
<«
(12.8) My ypp(Eit) = —{) (Ryyp1 * Kygyp )Gp (8048
and
4 aG, . (8) ©
(12,9) W, (x,t) = [ X (8,G(8)) —= as = -f G, . (8) L x (s,G(s))ds
* i3°=' o 13kl ‘e ds o Kl ds ijk1 " ’'= *

The coefficients Hijkp of ka and the terms Nij(x) are of lower order and Nij(x,t)
does not enter into analysis of problems of change of type.

We may write (12.9) as

d'ri

(12.10) ac sijkakp + Aijkpnkp + N

i3’
where

Misxp = Siykp * Pijkp ’
and 8 is symmetric and A skew symmetric in kp. D and 9 denote the symmetric and

skew symmetric part of [.
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Ay )
N -
4>
Ly
o ..: .
e In its general form, (12.10) and the equations of motion are a guacilinear system of

. . first order in the derivatives of p, u, J. We could write out conditions for
O evolutionarity or for change of type in steady flow as before. However, we can not in
LN .
o d P
I-'_\_- general isolate an equation for the vorticity, as we did for the Oldroyd models.

\':\‘ We can identify a class of models which is more special than the completely general -
~° A

equation (12,10), but much more general than the three-constant Oldroyd model. Let us

:—. i assume that .
o . ]

* - + 6§ + 68 + .

; \:: (12.11) sijkp =3 “:l.kpjp jkpip iijk Gijik) ' !
. :{r .
y where P is any second order tensor, expressible by integrals of the type (12.8). We need ;
(34 .
ﬁ: ] no assumptions at all on the anti-symmetric part Aijkp' Using (12.11) we may reduce .
A d K
;-..\f- (12.10) to :
u‘,: X K
il dat

i

[ 'S +

"N 3t = PakPy * PakPki * Aigkptep t Vig ¢ .
« .

A0 (12.12)

"~ :

l‘\. d; -

~ -—-PD+DPT+1(A'Q+(AQ)T)+N, .

N dt = == 2 : EY :- =

L y
_a’,’:.’ where Aijkp is symmetric in ij and gkew symmetric in kp. :
N y
8 :;‘4 The three constant Oldroyd model arises from (12.12) with special choices for the '
oo i

o tensors J,p and N: i
~ ™
"2 " STyt OukTan T %uaThy T 841wy ¢ :
!
W, n
. = at +

) '\ (12.13) Pik at,  *3 Gik y

» .
AP 1 K

M Ny T Y1yt
g
-.;'-' h
:-;: We now demonstrate that the quasilinear system associated is (12.12) is expressible in
WA

: . terms of the vorticity T = curl y. The equations of motion are
e
A
O
L]
LY K
“ L]

N
N \:,' . ;
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du

(12.14) p‘é‘Z‘s-Vpd-divl, div gy =20 .

We apply the operations curl and %; to (12.14), and find that to leading order

dr

2
(12.15) p L[ = curl div—+ ... .
R at

The question is now whether the right side of (12.15) is expressible in terms of [, to
leading order. Clearly & is expressible in terms of L, 8o we need no restrictions on

. Then, working the part with tensor g. we calculate

L}

3.9.(p,.D . +P,_.D . ) =

€abi®’3 P1kPky ¥ PyxPri [P, 3. 3.D . +P,.3.3.D.] + «uo

€abi ‘P1kb?3k3 * P3k°b%3 ki

3 33u
= % °ab1’1kv2 auk + % €abiFix 3 axia
*p Kpo¥ 9%y

+ eee o
Noting now that
2
v u=-curl ¢ ,
we get

(curl E)k + J'P 3.9 ca + eee

1
=-2F¢ 2 "9x°3%k

abipikab
It follows now that to leading order (12.15) is a second order quasilinear system of

equations for the components of the vorticity.
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